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Annihilating random walks in one-dimensional disordered media
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We study diffusion-limited pair annihilatiodh+A—0 on one-dimensional lattices with inhomogeneous
nearest-neighbor hopping in the limit of an infinite reaction rate. We obtain a simple exact expression for the
particle concentratiop,(t) of the many-particle system in terms of the conditional probabili@és;t|l;0)
for a single random walker in dual medium. For some disordered systems with an initially randomly filled
lattice this leads asymptotically t@=P(O;Zt|O;O) for the disorder-averaged particle density. We also
obtain interesting exact relations for single-particle conditional probabilities in random media related by du-
ality, such as random-barrier and random-trap systems. For some specific random-barrier systems the Smolu-
chovsky approach to diffusion-limited annihilation turns out to fg#1063-651X98)13702-9

PACS numbeps): 05.40+j, 05.60+w

Stochastic reaction-diffusion processes play an importansults [14,15. Interestingly, this result is at variance with
role in the description of interacting many-particle systemshe (dimensionality-independenimean-field behaviop(t)
in both physics and chemistry. Usually real systems are-1/(Dt) which is correct only in threéand higher dimen-
much too complex to be amenable to analytical or even nusions. The amplitude is universal in the sense that it depends
merical investigation. However, particularly in the context of neither on the initial densityfor random initial conditions
critical phenomena, simple toy models may suffice to deternor on the reaction ratel6]. However, if particles are mov-
mine universal properties correctly and to predict and eXing in a nontranslationally invariant energy landscape, it is
plain observed power laws or universal amplitude ratiosnot obvious how this will change the decay of the local or
Hence it is of importance both to examine the behavior ofyyerall particle concentration. The physical motivation be-
such models and to understand possible relationships bg;nqg the study of the one-dimensional case is not only its

tween microscopically different processes and their Characéxperimental relevance for polymer physics, but also its the-

terization in terms of un|ve_rs.al|.ty classes. In this paper Weretical importance in the understanding of the role of fluc-
investigate a model of annihilating random walkers describ;

: o ; S ) . tuations in low-dimensional systems. In both one- and two-
ing diffusion-limited pair annihilatioDLPA) of identical dimensional systems, diffusive mixing is inefficient and

particles in inhomogeneous media. This process describes ds 1o the building up of large-scale correlations. Thus the
both chemical reactions where the particles change their sta ads to ding up 9 '
assical mean-field rate equations for the study of these sys-

into an inert reaction product which takes no part in the® _ ) -
subsequent dynamics of the system, or physical reactiorf€Ms tend to_fa|l,_ and require a more sophisticated treatment.
where the particles actually annihilate under the emission of B€fore going into detail, we remind the reader of the es-
radiation. For a recent review of experimental and theoreticafentials of Smoluchovsky’s reasoning. The idea behind this
applications of the ordered model, see REfs2]. The model approack[llj is to replace in the mean—ﬁeld rate equation for
is related by a similarity transformation to the diffusion- the densityp(t)=—Xp?(t), the reaction constant by an
limited coagulation proceg8,4] which describes, e.g., laser- effective time-dependent reaction rate which is proportional
induced exciton dynamics on polymers. The model alsd0 the diffusive currenj(t) into an absorbing particle in a
maps to Glauber dynamics for the one-dimensional Isind?ackground of constant density. In one dimension, where
model[5-7], and is therefore of interest in the study of the J ()= \/D/t, this leads(up to the universal amplitude which
kinetics of disordered equilibrium systems. It plays an im-cannot be determined from the Smoluchovski argumemnt
portant role not only for the study of spin-relaxation phe-p(t)ocll\/ﬁ. One would like to know whether the
nomena but also for the solution of more intricate problemdluctuation-improved mean-field theory of Smoluchovsky
such as the derivation of persistence exponf#iteind non-  which predicts the correct behavior of the one-dimensional
equilibrium steady statd9,10]. ordered system remains valid in the presence of disorder.
The first comprehensive treatment of homogeneoudNaively, one might expect that the diffusion constant of the
diffusion-limited annihilation dates back to Smoluchovsky’s pure system would have to be replaced by some effective
classical work in 191711], but, despite renewed strong in- diffusion constant of the disordered system, i.p(t)
terest in the 1980s and 1990s the experimentally more reabk 1/\/D 4t for the disorder-averaged density. But clearly this
istic case of spatially inhomogeneous particle hopping ratessannot always work, as can be seen in a simple and natural
e.g., in the presence of quenched disorder, has so far receivedample: Suppose one investigates DLPA on an ensemble of
very little attention[4,12,13. In homogeneous, translation- ordered chains of varying length<A, modeling, e.g., a
ally invariant environments the particle density decays with gpolymer mixture of polymer fragments of varying finite
power law which depends on the dimensionality of the sysiength. This is equivalent to taking an infinite chain and
tem. Both theoretically and experimentally one findsplace randomly, but with maximal distande broken bonds
p(t)~1/\/Dt in one dimension, in agreement with exact re-across which particles cannot move. If initially particles are
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placed randomly with probability 1/2 on each lattice site,where the off-diagonal matrix elements ldf are the(nega-
then the steady state density in each chain of lerigtls  tive) transition rates between states, and the diagonal entries
equal top* =1/(2L). Assuming that each chain length oc- are the inverse of the exponentially distributed lifetimes of
curs with equal probability, then the averaged densitythe states. A distribution at timeis given in terms of an

p* =1/(2L) ~InA/(2A) for large maximal length\. On the  initial state at timet=0 by |P(t))= e~ "' |P(0)). The ex-
other hand, since the particle is confined to a box of legth Pectation valug,(t)= (s|n, |P(t)) for the density at sité

the system is subdiffusive with w<A/t. Hence the Smolu- IS given by the projection operatoy which has value 1 if
chovsky formula gives the wrong resu,li_*ocllA. Even there is a particle at sité and O otherwise. The'vect'or
worse, with this Smoluchovsky approach one cannot evertSI=2,cx (7| performs the average over all possible final

estimate the approach of the density to its stationary valuetates of the stochastic time evolqtion. Choosing the ba§is of
One could, of course, try to be smart and apply SmoluchoX such that a particlévacancy on sitek corresponds to spin

vsky's approach to a finite system and then average ovetP (down) the Hamiltonian

system size. This indeed givg3 «<InA/(A). However, if ap-

plied to a different system where one distributes infinitely H=— h + /. h- 2
deep trapgsites out of which particles cannot juinpt a 2k (") @
maximal distance\, then this refined Smoluchovsky argu-

ment would also give* «<InA/(A) for this model. However, for the process can be written in terms of Pauli matrices
the exact result given below shows that, in fact, for this typeh, = (s; S..1+ Sy See1— M), Where n,=(1—0%)/2 and
of disorder,p* = 1/A, which happens to be consistent with s =(ox=io})/2 create §,) and annihilate ;) particles
the first, naive Smoluchovsky result. We conclude that therésee Ref[4] for detailg. Since the time evolution conserves
is no simple argument which tells one how to proceed withJarticle number modulo 2, it is convenient to work only on
out already knowing the answer. Thus exact results are rdhe even and odd subspaces defined by the projector
quired for a study of DLPA in inhomogeneous media. P*=(1=Q)/2 where Q=(—1)N=Ilof. For averaging

To this end we investigate, by a new exact mapping, aver final states we then usgs™|= (s|P*. The projection
DLPA lattice model with space-dependent hopping rateson the even sector of the uncorrelated initial state with a
The particles have no attractive or repulsive interaction bedensity 3 used below is given by the vector
tween themselves; they hop with fixed ratgs(/)) from 1Hy=(HL1|s*).
lattice sitek to sitek+ 1 (k—1). When two particles meet on In one dimension withhomogeneousiearest neighbor
site k they both annihilate instantaneously. This limit of an hopping, DLPA is related to zero-temperature Glauber dy-
infinite _reaction rate corresponds to the renormalization,gmics by a domain-wall duality transformatifs] which is
group fixed point of the ordered syste®,16,17, and we 5 jnyertible similarity transformatioi7]. On the other
believe that the disordered system with a finite reaction rat‘ﬁand, zero-temperature Glauber dynamics can be brought by
will also be in the same universality class as the infinite rate,,qiher similarity transformation into a form which is the

limit. transposeof the Hamiltonian for (homogeneoys DLPA

/In the case of constant hopping rates the predictions of>4) \we use these results to construct a new mairisuch
this model are in excellent agreement with experimental datﬁwat the process defined By=D~1HTD also describes a

n exciton dynami n very long order lymer chain . . . o
on exciton dynamics on very long ordered polymer chains LPA process with nearest neighbor hopping, albeit with

Thus we expect that the disordered model gives an equall i t hobDi tes in th f disorder. For th
good description of the behavior of realistic, disordered sys-I erent hopping rates n the presence ot disorder. For the
even particle sector we find

tems.
We define the process in terms of a master equation for
the probabilityP(»;t) of finding, at timet, a configuratiory Di=v1y2 vaL-1, ©)

of particles on a lattice df sites. Using standard techniques

[18—20, we express the time evolution given by the mastewhere yy 1 =[(1+i)op—(1—1)1/2, yu=[(1+i)oKok, 1
equation in terms of a quantum Hamiltonigh Since par- —(1—i)]/2, andD_=—D, | for the odd particle sector.
ticles annihilate instantaneously when they meet, there camo see what happens under the mapping, we noteRhais
never be more than one particle on any given site. The idea gnitary and transforms Pauli matrices as follows:

now to extend the bosonic Fock space formalisml&-2Q

to a quantum spin chains representafiah—23. One repre- ol kL

sents each of.theL2possibIe _particle configurations by a D;laﬁa’;HDi: Qo? k=L 4

vector | ), which, together with the transposed vectdrg, oL k=L

form an orthonormal basis of a vector spate (C?)®L. A

state with N particles placed on sitds,, . . . ky is repre- o, oW, K#FL

sented by|kq, ... ky), the completely empty lattice by the D. oy 1D+= +Qoro! k=L 6)
—_ L l - .

vector |0). The probability distribution corresponds to a

state vector|P(t))=X, _xP(#;t) |7), and one writes the )
master equation in the form In the even sector one now finds

d : e
GiPm=—(aHP®), @ H=—2 (rdh +/dhiy)- (©)
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This process is of the same form as the original pro€2gs starting at sitek— 1,k and moving in the dual environment.
but with dual hopping rates’,=ry, r=/x.1. We shall As a first specific result we calculate the final density of a
refer to the environment defined by the dual rates as the dugystem with infinitely deep traps placed randomly, as dis-
environmen{25]. cussed above. Clearly, i is not a trap site, thep, () =0.

In order to make use of the mapping, one needs to knoviHence the disorder-averaged densiffro) =qp() where

how a given initial distribution and the observables changgy=2/A is the density of traps and(t) is the density at a

under the transformation. For the transformation laws for, . . ~ 1
— t te. F Eq.(9 find t)=3, and theref
states, one needs Eqs4) and (5) and D;'|s*) trap site. From Eq(9) one finds p(t)=3, and therefore

=—i(i-1)-"t]0), D, |s*)=i(—i—1)-"1|0) for the P(*®)=1A. . | |
even sector, and analogous relations for the odd sector. For COnsider now the relation between the single-particle
the density at sit&k for an arbitrary initial state, one then conditional probabilities for dual environments. One may

finds write P(m;t|k;0)= <s|""‘*H_i"‘:’llaiznme*Ht k). By taking the
transpose and transforming undBr., one obtains in the
(s*|ne Mt |Pyy=1 <PO|IDe7I:It(1_0_>|§ 09D st infinite volume limit, the interesting exact relation
(7

P(m,k;t)—P(m,k—1:t)=P(m—1k—1;t)— P(m—1k;t).
The transformed initial state is a superposition of the steady (10
state(the empty lattice and the two-particle state with par- Note that Eqs(7)—(10) hold for any fixed hopping environ-

ticles at sitesk—1k. Bearing in mind thaH does not have ment, disordered or inhomogeneous, but regular. In this pa-
any particle creation terms one now realizes that the timeer we focus on disordered systems with translationally and

dependence of the density for an arbitrary many-particle inireflection invariant hopping rate distributions. In this case,
tial distribution is completely given by the dynamics of just Eq. (10) gives

two annihilating random walkers in the dual disordered en-

vironment, py(t)=a—=am (m,!le "' |k=1k), where P(r;t)=P(r:t)+c(t), (12)
the coefficientsx anda,,,, are determined by the initial state
and straightforward to work oy®6]. with an undetermined function(t) which is irrelevant for

In order to avoid immaterial technical complications with what follows. Relationg§10) and(11) are remarkable in that
boundary terms, from now on we consider only infinite sys-they relate the conditional probabilities for dual systems.
tems. By choosing some of the hopping rates equal to zero In order to analyze Eq.(9) further, we take
one can always recover results for finite systems. To calcua mean-field approach to the disorder average, i.e., we
late the two-particle transition probabiliti(m,n;t|k,1;0) ~ replace in Eq.8) the disorder average of the conditional
= (m,nle ™ |k,1), we note that the transition probability probability for two distinguishable noninteracting random

for a single random walkeP(m,k:t)=P(m:t|k,0) is the Wwalkers P(m,k;t)P(n,I;t) by the factorized average
sum over all p_aths Iead!ng fro_mto m, each welghted with JD(m,k;t) |5(n,l 1),

its proper statistical weight given by the hopping rates an

the particular form of the trajectory. Hence for two noninter- ho
acting particles moving frork to m and froml to n, respec-

tively, P(m,n;tk,1;0)=P(m,k;t)P(n,I;t). This sum in-

We are convinced numerically that this factorization
Ids well for the random-barrier model with uncorrelated
bond hopping probabilitieb, drawn uniformly from the in-
S _ terval 0.05<b,<3. This was done by an exact numerical
cludes the contribution of paths which cross each other. In ag | +ion of the discrete-time master equation for a random

annihilating random walk of otherwise noninteracting par- -lker on a lattice of. = 200 sites for a given random real-

ticles, the'contnbutmn of all crossing pa_lths havg to b.e Subization of the disorder, and then taking the average over
tracted. Since we are on a one-dimensional lattice this co

tribution is just the one given by all paths which start at sité1100 000 disorder realizationto keep disorder-related fluc-

k and end at site (instead ofm), and which start at site tuations smaJl To show this factorization in Fig. 1, the func-

and end at siten (instead ofn). Therefore, tion

P(m,k;t)P(n,l:t)
RA(t)= -1 (12)

P(m,k;t) P(n,I:t)

P(m,n;t|k,1;0)=P(m,k;t)P(n,I;t)—P(n,k;t)P(m,I;t).
(8

This further reduces the calculation of the density to the so-
lution of a single-particlerandom-walk problem in the dual s shown form=n=1 andk=1=0 in a double logarithmic
random environment. For an uncorrelated random initiaplot. The return probability gives the largest contribution to
state with density in the sector of even particle number, one the functionRMX(t), hence we do not need to check the fac-
obtains torization at other positions. The functidRiy(t) is fitted
- well by a power law

pr(t)= (2]e "t |[k—1k)/2, 9
. _ RiJt)~t¢, (13
where (2|== -, (m,n| is the sum over all states with two
particles. Thus the density at siteis equal to one half the where a=—0.49. For this the fit routine of the software
survival probability of two annihilating random walkers packageMATHEMATICA was used. We expect that the exact
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—4.5 disorderr = /. ,=b, where hopping across a bokgk+ 1
-5 is symmetric, but bond-dependent, a8} random-site dis-
_55 orderr,=/=sx. The energy of a particle in the random-
= barrier model(A) is the same at each site, but between sites
% =6 there are energy barriers of random height Thermal fluc-
- -65 tuations cause the particle to jump over these barriers with a
-7 random rateb,<exp(—BE,). Case(B) corresponds to the
_75§ random trap model. Here the particle sits in a site-dependent
* potential of depth—- E,. Random-bond and random-site dis-
4 5 6 7 8 9 : .
In() orders are dual in the sense of E@). Since for the random-

bond model P(m,k;t)=P(k,m;t), we conclude that the
FIG. 1. Factorization of one-particle condition probabilities after disorder-averaged conditional probabilities of the random-
the disorder averagdr(t) vst is shown in a double-logarithmic barrier model and the random-trap model are equal in one
plot. The line has a slope 0.49, and is a fit of the first seven points dimension for any translationally invariant disorder distribu-
which are produced by exact numerical calculations of the mastefion up to a functionc(t). For an uncorrelated ergodic dis-
equation where the jump probabilitieg were taken randomly from  grder distribution, diffusion in random barrier systems con-
a uniform distribution between 0.5, <1. verges to Brownian motion, i.e., the averaged conditional
probability becomes asymptotically equal to a Gauss distri-
exponent to ber= 1. The deviation of the last point in Fig. 1 bution with an effective diffusion constaf27-30
from the line originates from finite-size effects. The square
root of the time at this point is about the length of the sys- Doi=b. %, (15)
tem, and therefore the constant stationary probability of the
random-barrier system is reached exponentially fast. We alsand therefore, asymptotically,
investigated the case where zero is the lower limit of the
distribution of the hopping probabilities in the same system WZ 1 (16)
as above. In this case the behavior of the mean square dis- P V47D gt
placement of a single particle is subdiffusiye®)~t/In(t)
[27,30. This is due to the existence of very small hoppingfor random-trap and random-barrier systems. For exponen-
probabilities in even very small regions in the chain. Thetially distributed barrier or trap energiegE)xexp(—FE/ o)
factorization can only hold for very long times. Neverthelessthe random walk becomes subdiffusive below a critical tem-
the functioank(t) is very small even for short times and for perature given byorB.=1 [31,32. This leads to a time-
longer times there is a tendency of the functﬁk(t) to dependent effective diffusion coefficieBtygoctlt /AT o8)
decrease as it can be seen in Fig. 2, W“ﬂ]é(t) is spread and hence to a slower nonuniversal power law decay of the
vs In@). Independent arguments for the validity of this as-densityp(t)st™ 7).
sumption for more general types of disorder are given in the TO conclude, we obtained the following results.
conclusions. (i) We found the duality relation&l0) and (11) for ran-
Then, with Eqs(9) and (11), the disorder average of the dom walkers in dual systems. They play a role in the deri-
density for the initially randomly filled lattice is given by V'atri?n of Egs(14)—(16), but are also of interest in their own
right.
_ . . (i) The Smoluchovsky approach to DLPA is consistent
P(O=(P(0;20+P(L:21). a4 with random-trap and random-bond systems with vanishing
broken bond probabilitfEgs. (15 and (16)], but fails for

For large times, Eq(14) becomes the return probability . . ) .
guoted in the Abstract. Having in mind processes like exci-0me important disordered broken bond systems in one di-

o . mension. This raises the question under which general con-
ton dynamics it is reasonable to considéy random-bond ditions on the disorder of the Smoluchovsky approach is cor-

rect (see below.

(i) The expectation value of the density in diffusion-
limited annihilation in one dimension with nearest neighbor
. hopping and an infinite annihilation rate is completely deter-
0.06 mined by the dynamics of a single random walkggs. (7)
and(8)] in a dual hopping environmefEq. (6)]. This exact

0.1

0.08 |® o . .

R

004 result allows for the exact calculation of the density in spe-
0.02 cific environments, but can also be used for extremely accu-
rate numerical calculations of the density for any fixed inho-
% 3 5 3 mogeneous hopping environment or for disordered systems
In() with subdiffusive logarithmic behavior. The approach has a

straightforward extension to the calculation of correlation
FIG. 2. Factorization of one-particle condition probabilities after functions.
the disorder averag®(t) vs In(t). The points are produced as in  (iv) For disordered environments which are on average
Fig 1, but the jump probabilities, were taken randomly from a translationally and reflection invariant, and which lead to an
uniform distribution between €b,< 3. asymptotic factorization of the two-particle conditional prob-



57 ANNIHILATING RANDOM WALKS IN ONE -. .. 2567

abilities, the density at timé with a random initial state is expect a finite reaction rate or short-range interactions be-
equal to the return probability14) of a single particle. An tween particles to change this asymptotic behavior. It is in-
important open problem is the derivation of conditions onteresting to note that Eq14) is also consistent with the
disorder distributions under which factorization holds. For'énormalization group treatment of DLPA with disorder
such distributions, Eq(14) is an exact asymptotic result, [13]. Therefore we are confident that E@.4) holds for a
and, as we would like to point out, consistent with theProad class of disorder distributions.

Smoluchovsky approach if the return probability is propor- G \M.S. would like to thank the Department of Physics,
tional to 1ADegt. This may be a hint as to under which university of Oxford, for its kind hospitality and for provid-
circumstances the Smoluchovsky treatment is adequate fafig a stimulating environment. In particular, we thank M. J.
the calculation of the density. Since at late times particles arg, Richardson and J. L. Cardy for communicating prelimi-
separatedon averaggeby a distance Jp—, one would not  nary results obtained from the RG treatment of DLPA.
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