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Annihilating random walks in one-dimensional disordered media
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We study diffusion-limited pair annihilationA1A→0 on one-dimensional lattices with inhomogeneous
nearest-neighbor hopping in the limit of an infinite reaction rate. We obtain a simple exact expression for the
particle concentrationrk(t) of the many-particle system in terms of the conditional probabilitiesP(m;tu l ;0)
for a single random walker in adual medium. For some disordered systems with an initially randomly filled
lattice this leads asymptotically tor(t)5P(0;2tu0;0) for the disorder-averaged particle density. We also
obtain interesting exact relations for single-particle conditional probabilities in random media related by du-
ality, such as random-barrier and random-trap systems. For some specific random-barrier systems the Smolu-
chovsky approach to diffusion-limited annihilation turns out to fail.@S1063-651X~98!13702-9#

PACS number~s!: 05.40.1j , 05.60.1w
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Stochastic reaction-diffusion processes play an impor
role in the description of interacting many-particle syste
in both physics and chemistry. Usually real systems
much too complex to be amenable to analytical or even
merical investigation. However, particularly in the context
critical phenomena, simple toy models may suffice to de
mine universal properties correctly and to predict and
plain observed power laws or universal amplitude rati
Hence it is of importance both to examine the behavior
such models and to understand possible relationships
tween microscopically different processes and their cha
terization in terms of universality classes. In this paper
investigate a model of annihilating random walkers desc
ing diffusion-limited pair annihilation~DLPA! of identical
particles in inhomogeneous media. This process descr
both chemical reactions where the particles change their s
into an inert reaction product which takes no part in t
subsequent dynamics of the system, or physical react
where the particles actually annihilate under the emission
radiation. For a recent review of experimental and theoret
applications of the ordered model, see Refs.@1,2#. The model
is related by a similarity transformation to the diffusio
limited coagulation process@3,4# which describes, e.g., lase
induced exciton dynamics on polymers. The model a
maps to Glauber dynamics for the one-dimensional Is
model @5–7#, and is therefore of interest in the study of th
kinetics of disordered equilibrium systems. It plays an i
portant role not only for the study of spin-relaxation ph
nomena but also for the solution of more intricate proble
such as the derivation of persistence exponents@8# and non-
equilibrium steady states@9,10#.

The first comprehensive treatment of homogene
diffusion-limited annihilation dates back to Smoluchovsky
classical work in 1917@11#, but, despite renewed strong in
terest in the 1980s and 1990s the experimentally more r
istic case of spatially inhomogeneous particle hopping ra
e.g., in the presence of quenched disorder, has so far rece
very little attention@4,12,13#. In homogeneous, translation
ally invariant environments the particle density decays wit
power law which depends on the dimensionality of the s
tem. Both theoretically and experimentally one fin
r(t);1/ADt in one dimension, in agreement with exact r
571063-651X/98/57~3!/2563~5!/$15.00
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sults @14,15#. Interestingly, this result is at variance wit
the ~dimensionality-independent! mean-field behaviorr(t)
;1/(Dt) which is correct only in three~and higher! dimen-
sions. The amplitude is universal in the sense that it depe
neither on the initial density~for random initial conditions!
nor on the reaction rate@16#. However, if particles are mov
ing in a nontranslationally invariant energy landscape, it
not obvious how this will change the decay of the local
overall particle concentration. The physical motivation b
hind the study of the one-dimensional case is not only
experimental relevance for polymer physics, but also its t
oretical importance in the understanding of the role of flu
tuations in low-dimensional systems. In both one- and tw
dimensional systems, diffusive mixing is inefficient an
leads to the building up of large-scale correlations. Thus
classical mean-field rate equations for the study of these
tems tend to fail, and require a more sophisticated treatm

Before going into detail, we remind the reader of the e
sentials of Smoluchovsky’s reasoning. The idea behind
approach@11# is to replace in the mean-field rate equation f
the densityṙ(t)52lr2(t), the reaction constantl by an
effective time-dependent reaction rate which is proportio
to the diffusive currentj (t) into an absorbing particle in a
background of constant density. In one dimension, wh
j (t)}AD/t, this leads~up to the universal amplitude whic
cannot be determined from the Smoluchovski argument! to
r(t)}1/ADt. One would like to know whether the
fluctuation-improved mean-field theory of Smoluchovs
which predicts the correct behavior of the one-dimensio
ordered system remains valid in the presence of disor
Naively, one might expect that the diffusion constant of t
pure system would have to be replaced by some effec
diffusion constant of the disordered system, i.e.,r(t)
}1/ADefft for the disorder-averaged density. But clearly th
cannot always work, as can be seen in a simple and na
example: Suppose one investigates DLPA on an ensemb
ordered chains of varying lengthL<L, modeling, e.g., a
polymer mixture of polymer fragments of varying finit
length. This is equivalent to taking an infinite chain a
place randomly, but with maximal distanceL, broken bonds
across which particles cannot move. If initially particles a
2563 © 1998 The American Physical Society
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2564 57G. M. SCHÜTZ AND K. MUSSAWISADE
placed randomly with probability 1/2 on each lattice si
then the steady state density in each chain of lengthL is
equal tor* 51/(2L). Assuming that each chain length o
curs with equal probability, then the averaged dens
r* 51/(2L); lnL/(2L) for large maximal lengthL. On the
other hand, since the particle is confined to a box of lengtL
the system is subdiffusive withDeff}L2/t. Hence the Smolu-
chovsky formula gives the wrong resultr* }1/L. Even
worse, with this Smoluchovsky approach one cannot e
estimate the approach of the density to its stationary va
One could, of course, try to be smart and apply Smoluc
vsky’s approach to a finite system and then average o
system size. This indeed givesr* } lnL/(L). However, if ap-
plied to a different system where one distributes infinite
deep traps~sites out of which particles cannot jump! at a
maximal distanceL, then this refined Smoluchovsky argu
ment would also giver* } lnL/(L) for this model. However,
the exact result given below shows that, in fact, for this ty
of disorder,r* 51/L, which happens to be consistent wi
the first, naive Smoluchovsky result. We conclude that th
is no simple argument which tells one how to proceed w
out already knowing the answer. Thus exact results are
quired for a study of DLPA in inhomogeneous media.

To this end we investigate, by a new exact mapping
DLPA lattice model with space-dependent hopping rat
The particles have no attractive or repulsive interaction
tween themselves; they hop with fixed ratesr k (l k) from
lattice sitek to sitek11 (k21). When two particles meet o
site k they both annihilate instantaneously. This limit of a
infinite reaction rate corresponds to the renormalizat
group fixed point of the ordered system@2,16,17#, and we
believe that the disordered system with a finite reaction
will also be in the same universality class as the infinite r
limit.

In the case of constant hopping rates the predictions
this model are in excellent agreement with experimental d
on exciton dynamics on very long ordered polymer chai
Thus we expect that the disordered model gives an equ
good description of the behavior of realistic, disordered s
tems.

We define the process in terms of a master equation
the probabilityP(h;t) of finding, at timet, a configurationh
of particles on a lattice ofL sites. Using standard technique
@18–20#, we express the time evolution given by the mas
equation in terms of a quantum HamiltonianH. Since par-
ticles annihilate instantaneously when they meet, there
never be more than one particle on any given site. The ide
now to extend the bosonic Fock space formalism of@18–20#
to a quantum spin chains representation@21–23#. One repre-
sents each of the 2L possible particle configurationsh by a
vector uh&, which, together with the transposed vectors^hu,
form an orthonormal basis of a vector spaceX5(C2) ^ L. A
stateh with N particles placed on sitesk1 , . . . ,kN is repre-
sented byuk1 , . . . ,kN&, the completely empty lattice by th
vector u0&. The probability distribution corresponds to
state vectoruP(t)&5(hPXP(h;t) uh&, and one writes the
master equation in the form

d

dt
P~h;t !52^huHuP~ t !& , ~1!
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where the off-diagonal matrix elements ofH are the~nega-
tive! transition rates between states, and the diagonal en
are the inverse of the exponentially distributed lifetimes
the states. A distribution at timet is given in terms of an
initial state at timet50 by uP(t)&5 e2Ht uP(0)&. The ex-
pectation valuerk(t)5 ^sunk uP(t)& for the density at sitek
is given by the projection operatornk which has value 1 if
there is a particle at sitek and 0 otherwise. The vecto
^su5(hPX ^hu performs the average over all possible fin
states of the stochastic time evolution. Choosing the basi
X such that a particle~vacancy! on sitek corresponds to spin
up ~down! the Hamiltonian

H52(
k

~r khk
11l khk

2! ~2!

for the process can be written in terms of Pauli matric
hk

65(sk
1sk61

2 1sk
1sk61

1 2nk), where nk5(12sk
z)/2 and

sk
65(sk

x6 isk
y)/2 create (sk

2) and annihilate (sk
1) particles

~see Ref.@4# for details!. Since the time evolution conserve
particle number modulo 2, it is convenient to work only o
the even and odd subspaces defined by the proje
P65(16Q)/2 where Q5(21)N5)ksk

z . For averaging
over final states we then usês6u5 ^suP6. The projection
on the even sector of the uncorrelated initial state with
density 1

2 used below is given by the vecto

u 1
2
1&5( 1

2)
L21 us1&.

In one dimension withhomogeneousnearest neighbor
hopping, DLPA is related to zero-temperature Glauber
namics by a domain-wall duality transformation@6# which is
an invertible similarity transformation@7#. On the other
hand, zero-temperature Glauber dynamics can be brough
another similarity transformation into a form which is th
transposeof the Hamiltonian for ~homogeneous! DLPA
@24#. We use these results to construct a new matrixD such
that the process defined byĤ5D21HTD also describes a
DLPA process with nearest neighbor hopping, albeit w
different hopping rates in the presence of disorder. For
even particle sector we find

D15g1g2•••g2L21 , ~3!

where g2k215@(11 i )sk
z2(12 i )#/2, g2k5@(11 i )sk

xsk11
x

2(12 i )#/2, andD252D1sL
x for the odd particle sector

To see what happens under the mapping, we note thatD6 is
unitary and transforms Pauli matrices as follows:

D6
21sk

xsk11
x D65H sk

z kÞL

QsL
z k5L ,

~4!

D6
21sk11

z D65H sk
xsk11

x kÞL

6QsL
xs1

1 k5L .
~5!

In the even sector one now finds

Ĥ52(
k

~r khk
21l khk21

1 !. ~6!
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This process is of the same form as the original process~2!,
but with dual hopping ratesl̂ k5r k , r̂ k5l k11. We shall
refer to the environment defined by the dual rates as the
environment@25#.

In order to make use of the mapping, one needs to kn
how a given initial distribution and the observables chan
under the transformation. For the transformation laws
states, one needs Eqs.~4! and ~5! and D1

21 us1&
52 i ( i 21)L21 u0&, D1 us1&5 i (2 i 21)L21 u0& for the
even sector, and analogous relations for the odd sector.
the density at sitek for an arbitrary initial state, one the
finds

^s1unke
2Ht uP0&5 1

2 ^P0uDe2Ĥt~12sk21
x sk

x!D21 us1&.
~7!

The transformed initial state is a superposition of the ste
state~the empty lattice! and the two-particle state with pa
ticles at sitesk21,k. Bearing in mind thatĤ does not have
any particle creation terms one now realizes that the t
dependence of the density for an arbitrary many-particle
tial distribution is completely given by the dynamics of ju
two annihilating random walkers in the dual disordered e
vironment, rk(t)5a2(m,laml ^m,l ue2Ĥt uk21,k&, where
the coefficientsa andalm are determined by the initial stat
and straightforward to work out@26#.

In order to avoid immaterial technical complications wi
boundary terms, from now on we consider only infinite sy
tems. By choosing some of the hopping rates equal to z
one can always recover results for finite systems. To ca
late the two-particle transition probabilityP̂(m,n;tuk,l ;0)
5 ^m,nue2Ĥt uk,l &, we note that the transition probabilit
for a single random walkerP̂(m,k;t)[ P̂(m;tuk,0) is the
sum over all paths leading fromk to m, each weighted with
its proper statistical weight given by the hopping rates a
the particular form of the trajectory. Hence for two noninte
acting particles moving fromk to m and froml to n, respec-
tively, P̂(m,n;tuk,l ;0)5 P̂(m,k;t) P̂(n,l ;t). This sum in-
cludes the contribution of paths which cross each other. In
annihilating random walk of otherwise noninteracting p
ticles, the contribution of all crossing paths have to be s
tracted. Since we are on a one-dimensional lattice this c
tribution is just the one given by all paths which start at s
k and end at siten ~instead ofm), and which start at sitel
and end at sitem ~instead ofn). Therefore,

P̂~m,n;tuk,l ;0!5 P̂~m,k;t !P̂~n,l ;t !2 P̂~n,k;t !P̂~m,l ;t !.
~8!

This further reduces the calculation of the density to the
lution of a single-particlerandom-walk problem in the dua
random environment. For an uncorrelated random ini
state with density12 in the sector of even particle number, on
obtains

rk~ t !5 ^2ue2Ĥt uk21,k&/2, ~9!

where ^2u5(n.m ^m,nu is the sum over all states with tw
particles. Thus the density at sitek is equal to one half the
survival probability of two annihilating random walker
al
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starting at sitesk21,k and moving in the dual environmen
As a first specific result we calculate the final density o
system with infinitely deep traps placed randomly, as d
cussed above. Clearly, ifk is not a trap site, thenrk(`)50.
Hence the disorder-averaged densityr(`)5q r̃ (`) where
q52/L is the density of traps andr̃ (t) is the density at a

trap site. From Eq.~9! one finds r̃ (t)5 1
2, and therefore

r(`)51/L.
Consider now the relation between the single-parti

conditional probabilities for dual environments. One m
write P(m;tuk;0)5 ^suodd) i 51

m21s i
znme2Ht uk&. By taking the

transpose and transforming underD2 , one obtains in the
infinite volume limit, the interesting exact relation

P~m,k;t !2P~m,k21;t !5 P̂~m21,k21;t !2 P̂~m21,k;t !.
~10!

Note that Eqs.~7!–~10! hold for any fixed hopping environ
ment, disordered or inhomogeneous, but regular. In this
per we focus on disordered systems with translationally
reflection invariant hopping rate distributions. In this ca
Eq. ~10! gives

P~r ;t !5 P̂~r ;t !1c~ t !, ~11!

with an undetermined functionc(t) which is irrelevant for
what follows. Relations~10! and~11! are remarkable in tha
they relate the conditional probabilities for dual systems.

In order to analyze Eq. ~9! further, we take
a mean-field approach to the disorder average, i.e.,
replace in Eq.~8! the disorder average of the condition
probability for two distinguishable noninteracting rando

walkers P̂(m,k;t) P̂(n,l ;t) by the factorized average

P̂(m,k;t) P̂(n,l ;t).
We are convinced numerically that this factorizatio

holds well for the random-barrier model with uncorrelat
bond hopping probabilitiesbk drawn uniformly from the in-
terval 0.05,bk<

1
2. This was done by an exact numeric

solution of the discrete-time master equation for a rand
walker on a lattice ofL5200 sites for a given random rea
ization of the disorder, and then taking the average o
100 000 disorder realizations~to keep disorder-related fluc
tuations small!. To show this factorization in Fig. 1, the func
tion

Rnl
mk~ t !5

P~m,k;t !P̂~n,l ;t !

P̂~m,k;t ! P̂~n,l ;t !

21 ~12!

is shown form5n51 andk5 l 50 in a double logarithmic
plot. The return probability gives the largest contribution
the functionRnl

mk(t), hence we do not need to check the fa
torization at other positions. The functionR10

10(t) is fitted
well by a power law

R10
10~ t !;t2a, ~13!

where a520.49. For this the fit routine of the softwar
packageMATHEMATICA was used. We expect that the exa
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2566 57G. M. SCHÜTZ AND K. MUSSAWISADE
exponent to bea5 1
2. The deviation of the last point in Fig.

from the line originates from finite-size effects. The squa
root of the time at this point is about the length of the s
tem, and therefore the constant stationary probability of
random-barrier system is reached exponentially fast. We
investigated the case where zero is the lower limit of
distribution of the hopping probabilities in the same syst
as above. In this case the behavior of the mean square
placement of a single particle is subdiffusive^x2&;t/ ln(t)
@27,30#. This is due to the existence of very small hoppi
probabilities in even very small regions in the chain. T
factorization can only hold for very long times. Neverthele
the functionRnl

mk(t) is very small even for short times and fo
longer times there is a tendency of the functionRnl

mk(t) to
decrease as it can be seen in Fig. 2, whereRnl

mk(t) is spread
vs ln(t). Independent arguments for the validity of this a
sumption for more general types of disorder are given in
conclusions.

Then, with Eqs.~9! and ~11!, the disorder average of th
density for the initially randomly filled lattice is given by

r~ t !5~P~0;2t !1P~1;2t ! . ~14!

For large times, Eq.~14! becomes the return probabilit
quoted in the Abstract. Having in mind processes like ex
ton dynamics it is reasonable to consider~A! random-bond

FIG. 1. Factorization of one-particle condition probabilities af
the disorder average.R(t) vs t is shown in a double-logarithmic
plot. The line has a slope20.49, and is a fit of the first seven poin
which are produced by exact numerical calculations of the ma
equation where the jump probabilitiesbk were taken randomly from

a uniform distribution between 0.05,bk<
1
2.

FIG. 2. Factorization of one-particle condition probabilities af
the disorder average.R(t) vs ln(t). The points are produced as i
Fig 1, but the jump probabilitiesbk were taken randomly from a

uniform distribution between 0,bk<
1
2.
e
-
e
so
e

is-

s

-
e

i-

disorderr k5l k11[bk where hopping across a bondk,k11
is symmetric, but bond-dependent, and~B! random-site dis-
order r k5l k[sk . The energy of a particle in the random
barrier model~A! is the same at each site, but between si
there are energy barriers of random heightEk . Thermal fluc-
tuations cause the particle to jump over these barriers wi
random ratebk}exp(2bEk). Case~B! corresponds to the
random trap model. Here the particle sits in a site-depend
potential of depth2Ek . Random-bond and random-site di
orders are dual in the sense of Eq.~6!. Since for the random-
bond model P(m,k;t)5P(k,m;t), we conclude that the
disorder-averaged conditional probabilities of the rando
barrier model and the random-trap model are equal in
dimension for any translationally invariant disorder distrib
tion up to a functionc(t). For an uncorrelated ergodic dis
order distribution, diffusion in random barrier systems co
verges to Brownian motion, i.e., the averaged conditio
probability becomes asymptotically equal to a Gauss dis
bution with an effective diffusion constant@27–30#

Deff
215bk

21̄, ~15!

and therefore, asymptotically,

r~ t !5
1

A4pDefft
~16!

for random-trap and random-barrier systems. For expon
tially distributed barrier or trap energiesn(E)}exp(2E/s)
the random walk becomes subdiffusive below a critical te
perature given bysbc51 @31,32#. This leads to a time-
dependent effective diffusion coefficientDeff}t(12sb)/(11sb),
and hence to a slower nonuniversal power law decay of
densityr(t)}t21/(11sb).

To conclude, we obtained the following results.
~i! We found the duality relations~10! and ~11! for ran-

dom walkers in dual systems. They play a role in the de
vation of Eqs.~14!–~16!, but are also of interest in their ow
right.

~ii ! The Smoluchovsky approach to DLPA is consiste
with random-trap and random-bond systems with vanish
broken bond probability@Eqs. ~15! and ~16!#, but fails for
some important disordered broken bond systems in one
mension. This raises the question under which general c
ditions on the disorder of the Smoluchovsky approach is c
rect ~see below!.

~iii ! The expectation value of the density in diffusio
limited annihilation in one dimension with nearest neighb
hopping and an infinite annihilation rate is completely det
mined by the dynamics of a single random walker@Eqs.~7!
and~8!# in a dual hopping environment@Eq. ~6!#. This exact
result allows for the exact calculation of the density in sp
cific environments, but can also be used for extremely ac
rate numerical calculations of the density for any fixed inh
mogeneous hopping environment or for disordered syst
with subdiffusive logarithmic behavior. The approach ha
straightforward extension to the calculation of correlati
functions.

~iv! For disordered environments which are on avera
translationally and reflection invariant, and which lead to
asymptotic factorization of the two-particle conditional pro

r

er

r
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57 2567ANNIHILATING RANDOM WALKS IN ONE - . . .
abilities, the density at timet with a random initial state is
equal to the return probability~14! of a single particle. An
important open problem is the derivation of conditions
disorder distributions under which factorization holds. F
such distributions, Eq.~14! is an exact asymptotic resul
and, as we would like to point out, consistent with t
Smoluchovsky approach if the return probability is prop
tional to 1/ADefft. This may be a hint as to under whic
circumstances the Smoluchovsky treatment is adequate
the calculation of the density. Since at late times particles
separated~on average! by a distance 1/r→`, one would not
e,

s
-

,

or
r

-

for
re

expect a finite reaction rate or short-range interactions
tween particles to change this asymptotic behavior. It is
teresting to note that Eq.~14! is also consistent with the
renormalization group treatment of DLPA with disord
@13#. Therefore we are confident that Eq.~14! holds for a
broad class of disorder distributions.
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